Polynomial estimates for solutions of parametric elliptic equations on complete manifolds

نویسندگان

چکیده

"Let $P : \CI(M; E) \to F)$ be an order $\mu$ differential operator with coefficients $a$ and $P_k := P H^{s_0 + k +\mu}(M; k}(M; F)$. We prove polynomial norm estimates for the solution $P_0^{-1}f$ of form $$\|P_0^{-1}f\|_{H^{s_0 \mu}(M; E)} \le C \sum_{q=0}^{k} \, \| P_0^{-1} \|^{q+1} \,\|a \|_{W^{|s_0|+k}}^{q} f \|_{H^{s_0 - q}},$$ (thus in higher Sobolev spaces, which amounts also to a parametric regularity result). The assumptions are that $E, F M$ Hermitian vector bundles $M$ is complete manifold satisfying Fr\'echet Finiteness Condition (FFC), was introduced (Kohr Nistor, Annals Global Analysis Geometry, 2022). These useful uncertainty quantification, since coefficient can regarded as valued random variable. use these results integrability $\|P_k^{-1}f\|$ u = f$ respect suitable Gaussian measures."

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Solutions for Nonlinear Elliptic Equations on Compact Riemannian Manifolds

Let (M, g) be a smooth, compact Riemannian n-manifold, and h be a Hölder continuous function on M . We prove the existence of multiple changing sign solutions for equations like ∆gu + hu = |u| ∗−2 u, where ∆g is the Laplace–Beltrami operator and the exponent 2∗ = 2n/ (n− 2) is critical from the Sobolev viewpoint.

متن کامل

Stable Solutions of Elliptic Equations on Riemannian Manifolds

Abstract. This paper is devoted to the study of rigidity properties for special solutions of nonlinear elliptic partial differential equations on smooth, boundaryless Riemannian manifolds. As far as stable solutions are concerned, we derive a new weighted Poincaré inequality which allows to prove Liouville type results and the flatness of the level sets of the solution in dimension 2, under sui...

متن کامل

Nodal solutions to quasilinear elliptic equations on compact Riemannian manifolds

We show the existence of nodal solutions to perturbed quasilinear elliptic equations with critical Sobolev exponent on compact Riemannian manifolds. A nonexistence result is also given.

متن کامل

A Priori Estimates of Positive Solutions for Sublinear Elliptic Equations

In this paper, a priori estimates of positive solutions for sublinear elliptic equations are given in terms of thicknesses of domains. To this end, a supersolution is constructed by a composite function of a solution to an ordinary differential equation and a distance function. The results work efficiently in the case where the domain is an exterior or an interior of a convex set.

متن کامل

Boundary Estimates for Positive Solutions to Second Order Elliptic Equations

Consider positive solutions to second order elliptic equations with measurable coefficients in a bounded domain, which vanish on a portion of the boundary. We give simple necessary and sufficient geometric conditions on the domain, which guarantee the Hopf-Oleinik type estimates and the boundary Lipschitz estimates for solutions. These conditions are sharp even for harmonic functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Universitatis Babe?-Bolyai

سال: 2022

ISSN: ['1224-8754', '2065-9458']

DOI: https://doi.org/10.24193/subbmath.2022.2.13